NOVOTECH SRL AEROSPACE ADVANCED TECHNOLOGY

www.novotech.it

La propulsione ibrida nell'aviazione generale: Innovazione e sperimentazione

> Marco Barile, Ph.D. *Chief Technical Officer*

Contents

Motivation for Hybrid-Electric (HE) Aircrafts

HE Propulsion Architectures

Review of Aircrafts

SEAGULL Aircraft - HE version Development

The objective of Flightpath 2050 (Europe's Vision for Aviation) is a reduction of 75% in CO₂-emissions per passenger kilometer, a 90% in NO_x emissions and a 65% in perceived noise relative to aircraft of the year 2000.

Goals and Key contributions	2000 (Reference)	2020 (Vision)	2020 (AGAPE)	2020 (SRIA)	2035 (SRIA)	2050 (SRIA)
CO ₂ objective vs 2000 ("HLG")		-50%**				-75%**
CO ₂ vs 2000 (kg/pass km)*		-50%	-38%	-43%	-60%	-75%
Airframe energy need (Efficiency)	1	0,75	0,85	0,8	0,7	0,32
Propulsion & Power energy need (Efficiency)	1	0,8	0,8	0,8	0,7	
ATM and Infrastructure	1	0,88	0,95	0,93	0,88	0,88
Non Infrastructure- related Airlines Ops	1	0.96	0.96	0.96	0,93	0,88

comparison with same transport capability aircraft and on a same mission in term on range and payload
 ** ACARE 2020 and ACARE 2050 High Level Goals for airframe, engine, systems and ATM/Operations

Advisory Council for Aeronautics Research in Europe (ACARE) emissions reduction and system efficiency goals

The **electrification** of the propulsion system is seen as one of the few approaches that will feasibly close this gap in the desired time-frame.

Total Efficiency The <u>conversion chain</u> from on-board Energy to Propulsion

DLR: Electric Flight - Potential and Limitations

The results show that the classical internal combustion engine offers the lowest mass and hence an effective specific energy of almost 1600 Wh/kg, which is about 14% of the specific energy content of the raw kerosene fuel.

ass and equivalent energy density of propulsion systems providing a shaft power of 50 kW for 2 hours.

	SIG	HTS mot	inerators,	Current energy densities: - Electric machines (motors, ge	ryogenic cooling system:
wer density – B	*: For poi				
0	95-97%	0	95%	Efficiency	¢
0	1850 [KW]	0	190 [KW]*	Power	Þ
3	10-15 [kW/kg]	•	8.0 [kW/kd]*	Power Density	Motor
0	HTS motors (2025+)		Tesia Model 3	Technology	Electric
0	400 - 640 [W/kg]	Kg]	400 - 450 [W/	Power density	
3	750 - 2000 [Wh/I]	3	[INNN] 065	Volumetric Energy Density	
0	500 - 1000 [Wh/kg]	h/kg]	200 - 260 M	Energy Density E*	
	Lithium-Air		Lithium-Ion	Technology	Batteries
	2035	ΥE	Toda		

La propulsione ibrida nell'aviazione generale: Innovazione e sperimentazione

თ

25

AEROSPACE ADVANCED TECHNOLOGY

ears

The **expected benefits** of using a hybrid electric power-train in flight vehicles are summarised below:

- Fewer emissions by reducing fuel burn;
- Less atmospheric <u>heat</u> release;

➢ Reduced <u>noise impact</u> for communities and quieter flight for passenger comfort.

> Better <u>energy conservation</u> and less dependence on fossil fuels.

> Better reliability by substitution of turbo-machinery with electric motors as means of propulsive power producers.

Parallel redundancy

Higher peak power.

These benefits would mostly derive from the use of electric energy, that could be (partially) produced by <u>renewable sources.</u>

Hybrid propulsion architectures

Electric motor: very high power-to-weight ratio (5KW/Kg), rapid and precise control – combined with a combustion engine running at peak efficiency

Pipistrel Alpha Electro is an all-electric high-wing LSA developed by Slovenian company Pipistrel from the prototype WATTsUP.
It is currently available on market and is specifically designed to satisfy needs of flight schools, needing an average endurance of one hour.
17 kWh Li-poly batteries are employed and are rechargeable in less than one hour.

Aircraft	Pipistrel Alpha Electro
Туре	All-Electric aircraft
Crew	2 passengers
Energy storage	Li-poly battery pack
Propulsion	60 kW electric motor
Top speed	105 kn
Endurance	90 min
Range	150 km

Airbus E-fan is an all-electric twin-seat mid-wing experimental that first flew in July 2014; the airplane has an unique feature of a ducted 8-blades propeller and an autonomous landing gear electric system capable of providing extra power through wheels during takeoff.

The aircraft was intended for pilot training and mass production was planned to start in 2017 but program was canceled in April 2017.

Aircraft	Airbus E-fan
Туре	All-Electric aircraft
Crew	2 passengers
Energy storage	Li-poly battery pack
Propulsion	60 kW electric motor
Top speed	105 kn
Endurance	60 min
Range	N.Av.

Solar Impulse 2 is a solar-powered all-electric high-wing aircraft capable of flying virtually *forever*, being entirely powered by solar energy; although a world record aircraft, this **technology is still prohibitive** due to too low photovoltaic cells' specific power, resulting in a very large aircraft size.

Aircraft	Solar Impulse 2
Туре	All-Electric aircraft
Crew	1 passenger
Energy storage	Photovoltaic cells
Propulsion	4x10HP electric motors
Top speed	116.6 kn
Endurance	unlimited
Range	unlimited

Pipistrel HY-4 is a hybrid-electric <u>twin-fuselage aerotaxi</u> developed by Slovenian company Pipistrel that is powered by a 80 kW electric engine fed by fuel cells. The aircraft is intended to serve as aerotaxi to cover all possible routes in Germany to offer a faster and more flexible transportation solution with zero emissions.

Aircraft	Pipistrel HY-4
Туре	Hybrid-Electric aircraft
Crew	4 passengers
Energy storage	Li-poly + Fuel Cells
Propulsion	80 kW electric motor
Top speed	108 kn
Endurance	N.Av.
Range	800-1500 km

Extra 330LE is an aerobatic aircraft developed by Extra Aircraft from the conventional Extra 330L family, in cooperation with Siemens, MT-Propeller and Pipistrel that first flew in July 2016; it is equipped with the Siemens SP260D electric motor, fed by14 Li-ion batteries with a total capacity of 18.6 kWh.

Aircraft	Extra 330LE
Туре	All-Electric aircraft
Crew	1 passenger
Energy storage	Li-ion
Propulsion	260 kW electric motor
Top speed	182 kn
Endurance	20 min
Range	N.Av.

Pipistrel Panthera Hybrid is a Hybrid-Electric aircraft under development by Pipistrel as a hybrid version of the already existing Panthera.

The goal of the project is to design an airplane that can be equipped with three different types of propulsion: a conventional version, already on the market, the hybrid-electric version, now under development, and a future all-electric one.

Panthera Hybrid will be powered by a 150 kW electric motor fed by Li-poly batteries charged by Rotax-915 internal combustion engine.

Aircraft	Pipistrel Panthera Hybrid
Туре	Hybrid-Electric aircraft
Crew	4 passengers
Energy storage	Li-poly
Propulsion	150 kW electric motor
Top speed	212 kn
Endurance	N.Av.
Range	1000 nm

NASA X-57 Maxwell aircraft is a prototype developed by NASA from a Tecnam P2006T with a very high wing loading to reduce drag, using distributed propulsion to increase overall lift due to high-energy flow coming from 6 propellers for each half-wing, with a larger one at the tip to control flow separation to reduce induced drag.

Aircraft	NASA X-57 Maxwell
Туре	All-Electric aircraft
Crew	4 passengers
Energy storage	Li-ion
Propulsion	14 electric motors
Top speed	150 kn
Endurance	60 min
Range	160 km

The SEAGULL is a **breakthrough** with respect to the current transportation systems, a high performing **ultralight amphibian aircraft**, **easy** and **economical**, operating from any infrastructure in complete **autonomy**.

SEAGULL Main Characteristics

- Full composite amphibious
- Braced wing (through linear actuators)
- Automated Folding wing allowing the usage:
 - as classical UL aircraft (no folded)
 - as sail boat (folded)
 - as ship or for ground transport and storage (fully folded aft)
- Single engine pusher configuration
- Hybrid propulsion system (alternative)
- Retractable landing gear

Project partially <u>funded</u> by **MISE** - Italian Ministry of the Economic Development (Law 808/85)

<u>Start date:</u> January 2018 <u>End date:</u> December 2020

Financing of **1.3M€** of which 55% to be returned

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

The aim is to asses the potential replacement of a standard piston engine propulsion architecture (i.e. Rotax 912S) with a full electric or hybrid electric configuration.

In order to evaluate the energy needed we started from the curves of 3 blades Sensenich 3B0R5 L68C - 68".

It was assumed to vary the rotation speed of the propeller from a minimum of 1900 rpm to a max value of 2800rpm.

It was assumed to work with a pitch of 18,5.

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Calculate the Energy needed to complete the standard mission @ Vcruise =170km/hr. and pitch 18,5

Airplane reques	t section						
Take-off time							
time (s):	10						
Cruise time @ 2500 ft		Cruise time @ 6000	ft				
time (s):	1800	time (s):	1800				
Climb time 0- 2500 ft		Climb time 2500- 60	000 ft				
time (s):	180	time (s):	180				
Phase	Thrust (N)	Prop. Torque (N*m)	Required power	Time (s)	Energy (kWhr.)	%	
Take off	3441.09	552.79	162.06	10	0.45	1.05	Expected takeoff time has been increased to 10s
Climb 2500	1197.69	282.82	68.10	180	3.41	7.96	
Cruise 2500	634	165.87	34.73	1800	17.37	40.59	
Climb 6000	1389.10	318.54	83.38	180	4.17	9.74	
Cruise 6000	570	149.12	31.23	1800	15.61	36.49	
Descent	195.11	53.66	10.67	600	1.78	4.16	
			Ĭ	TOTAL	42.78	kWhr.	Gross mechanical energy required (propeller efficiency)
				Av. Power	33.70	kW	

Dattery section						
Battery discharge Effic	iency	Motor Efficiency				
eta	0.98	eta	0.98			
Battery nominal Volta	ge	Driver Efficiency				
V	370	eta	0.985			
Phase	Power (kW)	Required Current (A)	Time (s)	El. Energy (kWhr.)	%	In theory a Potax 012s can provide 45kW/br
Take off	162.06	437.99	10	0.48	1.11	III theory a rotax 9125 can provide 45kwill.
Climb 2500	68.10	184.07	180	3.60	8.41	with about 25 lt of fuel considering the
Cruise 2500	34.73	93.87	1800	18.36	42.91	with about 25 ft. of fuel considering the
Climb 6000	83.38	225.34	180	4.41	10.30	ave, efficiency of the engine of about 0.20.
Cruise 6000	31.23	84.40	1800	16.50	38.58	
Descent	10.67	28.85	600	1.88	4.40	\wedge
			TOTAL	45.23	cross electrical energy r	equired (motor, driver and discharging efficiency)
			Average Power	35.63		

Lithium-ion and Lithium-polymers batteries are the most common batteries due to very high performance compared to other technologies available on the market:

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Batteries

Ragone diagram displaying available technologies in 2008.

	240-	Note: These th Rare Earth elei types of Lithiu Computers and amounts of po susceptible to	ree types of Lith ment that helps m Batteries are t d Electric Vehicle wer in a small p a Thermal Event	ium batteries co to provide the ex used in Cell Phon is because they o ackage. As you h	ntain COBAL (tra power. 1 es, Laptop an supply lai ave seen the	T the These rge y may be			-
/Kg	160			Lithium	Iron Ph	osphate			
5	120				+	╊┣	_	_	
	80						_		
	40								
	٥ļ	ead Acid N	liCd NiM	H LTO	LFP	LMO	NMC	LCO	NCA

	LCO	NMC	NCA	LMO	LFP
Advantages	Cycle life, energy density	Excellent energy density	Cycle life, power	Thermal stability, price, energy density	Excellent cycle life
Disadvantages	Thermal stability	Patent issues	Sensitive to moisture	Cycle life	Energy density, power
Common applications	Portable electronics	Power tools, EVs	High quality electronics	Power tools	Power tools, stationary energy storage, e-bikes
		\$			\$\$

J

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

Batteries ٠

Li-ion cylindrical: "Tesla impact": 150 M cells in 2013, 300M in 2014, 600 M in 2015

Source: Avicenne Energy*, ARK Investment Management LLC

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

Batteries

Tipo prismatico rigido Plastica

Tipo prismatico rigido alluminio

Example of compact power module that includes BMS and various security systems of a Tesla model S, the package uses 18650 cells there are approx. 450 batteries from Panasonic.

- Capacity ≈ 5.3kWh
- Weight \approx 24.5 kg.
- Dimensions [cm] = 68 x 28 x 7.5

Usually similar packages are used in series and in parallel to obtain the desired specifications

Modulo batteria Tesla model S

25 NOVOTECH SRL AEROSPACE ADVANCED TECHNOLOGY y e a r s

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Calculate the size and volumes of the batteries

FULL ELECTRIC @ 170 km/hr.

HYBRID @ 170 km/hr. @ 35%

Battery Pack Coba	lt NMC	Full Electric			
Battery Weight	173.94	kg.			
Battery volume	88.50	lt.			
Number of req. Cells	456.41	#			
Cost of the pack	€ 11,758.60				
Max Voltage	1675.01	V			
Max Current	12.32	kA			
Tab.5 Litio cobalto POUCH					

Battery Pack Iron LFE		Full Electric		
Battery Weight	311.90	kg.		
Battery volume	177.35	lt.		
Number of req. Cells	141.33	#		
Cost of the pack	€ 13,115.36	£		
Total Voltage	452.25	V		
Total Current	14.13	kA		
Tab 6 Litio Ferro POLICH				

Battery Pack Coba	Full Electric	
Battery Weight	167.50	kg.
Battery volume	95.41	lt.
Number of req. Cells	3850.94	#
Cost of the pack	€ 10,401.84	
Max Voltage	14.13	КV
Max Current	12.32	kA
Tab.7 L	itio Cobalto 18	650

Battery Pack Iron LFE		Full Electric
Battery Weight	486.29	kg.
Battery volume	268.77	lt.
Number of req. Cells	12458.78	#
Cost of the pack	€ 17,547.45	€
Total Voltage	41.11	kV
Total Current	13.70	kA
Tab.8	Litio Ferro 186	50

-		-		
	Battery	/ Pack	Cobalt	IYBRID

Dattery Fack CODar		33.00%
Battery Weight	60.88	kg.
Battery volume	30.98	lt.
Number of req. Cells	159.74	#
Cost of the pack	4115.51	£
Total Voltage	586.25	V
Total Voltage	4.31	kA

Tab.13 Litio Cobalto Pouch

25 00%

Battery Pack Iron L	35.00%	
Battery Weight	109.16	kg.
Battery volume	62.07	lt.
Number of req. Cells	49.47	#
Cost of the pack	4590.38	€
Total Voltage	158.29	V
Total Current	4.95	kA
Tab.	14 Litio Ferro Pouch	

Battery Pack Cobalt NMC HYBRID 35.0					
Battery Weight	Battery Weight 58.63				
Battery volume	33.39	lt.			
Number of req. Cells	1347.83	#			
Cost of the pack	3640.64	£			
Total Voltage	4.95	kV			
Total Voltage	4.31	kA			
Tab.1	5 Litio Cobalto 18650				

Battery Pack Iron L	35.00%		
Battery Weight	Battery Weight 170.20		
Battery volume	94.07	lt.	
Number of req. Cells	4360.57	#	
Cost of the pack	6141.61	€	
Total Voltage	14.39	kV	
Total Current	4.80	kA	
Tab.	16 Litio Ferro 18650		

The sizing of the generation system envisages the use of an endothermic engine that works at a fixed point on a generator and uses a dedicated electronics to work in parallel on the battery pack and the main propulsion engine.

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

 Calculate the hybrid system to recharge the batteries and downselect the components

<u>Energy storage is totally electric</u> so the batteries take the place of the tank and the electric motor takes the place of the ICE.

Main engine propulsion system permanent magnet brushless motors are the ones most suitable for this type of application thanks to their power density (typically up to 5kW/kg).

Moreover, they can are easily overloaded without major problems for several minutes with a factor of up to 2 when cold.

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Calculate the hybrid system to recharge the batteries and downselect the components

In the hybrid propulsion system, only a part of the energy needed is stored in the batteries (%), so a power generation system is required to provide the necessary difference during the flight to help recharge of the batteries and provide the necessary redundancies.

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

Calculate the hybrid system to recharge the batteries and ٠ down-select the components

Mechanical		Electrical
Axial flux synchronous permanent magnet motor/generator; sinusoidal three phase	Maximal battery voltage:	670 (HV) / 470 (MV) / 130 Vdc (LV)
228 mm	Peak power (at 5500 RPM):	100 kW
86 mm	Continuous power*:	up to 55 kW
12 kg (AC) / 12.3 kg (CC, LC)	Peak torque:	230 Nm
air (IP21) / water glycol (IP65) / combined (IP21)	Continuous torque*:	up to 120 Nm
Front: 6x M8 threaded holes Back: 8x M8 threaded holes	Efficiency:	up to 98%
	Mechanical Axial flux synchronous permanent magnet motor/generator; sinusoidal three phase 228 mm 86 mm 12 kg (AC) / 12.3 kg (CC, LC) air (IP21) / water glycol (IP65) / combined (IP21) Front: 6x M8 threaded holes Back: 8x M8 threaded holes	Mechanical Axial flux synchronous permanent magnet motor/generator, sinusoidal three phase Maximal battery voltage: 228 mm Peak power (at 5500 RPM): 86 mm Continuous power*: 12 kg (AC) / 12.3 kg (CC, LC) Peak torque: air (IP21) / water glycol (IP65) / combined (IP21) Continuous torque*: Front: 6x M8 threaded holes Back: 8x M8 threaded holes Efficiency:

Direct Drive Permanent Magnet MTOP 260 kW @ 2500 RPM Torque 977 Nm **UDC** 580 V Oil cooled @ 90 °C Efficiency 95% Weight 44kg 50 kg **Power Density** 5.9 kW/kg 5.2 KW/Kg

SP260D-A

Developed for maximal Power Density Redundant 3 Phase Windings

Implemented in Extra 330LE

Achievements:

- Electric Aircraft Speed Records
- Electric Aircraft Climbing Records
- First All-Electric Glider Towing

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Calculate the hybrid system to recharge the batteries and down-select the components

Motor REX 90 is specialy designed for project EPOS (Electric Powered Small Aircraft). Working voltage is 250-360V and maximum power is 60Kw. Motor work at 1800-2300RPM. Due compact design and internal prop adapter is intended as replacement 60Kw Rotax motor. Motor is air cooled but we prepare watter cooled versin. Motor have integral hall and temperature sensor.

TYPE	TURN	VOLTAGE (V)	CURRENT CONTINUOUS 7 MAX (KW)	WORKING ROTATION	WEIGHT (G)	RPM/V (1)
REX 90	6	380	25 - 60	2200	17000	7,45

Motor REB 90 is specialy designed for project EPOS (Electric Powered Small Aircraft). Working voltage is 250-360V and maximum power is 80Kw. Motor work at 1800-2400RPM. Due compact design and internal prop adapter is intended as replacement 80Kw Rotax motor.

Motor is air or watter cooled versin. Motor have integral hall and temperature sensor.

ТҮРЕ	TURN	VOLTAGE (V)	CURRENT CONTINUOUS / MAX (KW)	WORKING	WEIGHT (G)	RPM/V (1)
REB 90	4	350	30 - 80	2800	23000	8
REB 90	4/5	380	30 - 80	2200	20000	7,5

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

Operative Cost Analyses for the FE and HE versions ٠

Profilo di missione Standard @ 170km/hr. pitch 18,5 Batterie 18650

COMPONENTI	Nome	Peso	
Propulsore	EMRAX 268	20.30	
Driver	Emsiso 300	7.00	
Battery pack	Samsung, Panasonic, LG	167.50	Cost- A
BMS + accessory	Vari	9.70	$\int COSI = \Delta +$
Accessori battery pack enclosure	tbd	20.00	
safety systems	tbd	15.00	
User interface control unit & display	custom	1.00	
TOTALE	kg.	240.50	

COMPONENTI	Nome	Peso	
Propulsore	EMRAX 268	20.30	
Driver	Emsiso 300	7.00	
Battery pack	Samsung, Panasonic, LG	58.63	
BMS + accessory	Vari	5.70	
Accessori battery pack enclosure	tbd	8.00	
safety systems	tbd	8.00	Cos
Motore Endotermico carica	HE	15.00	
Generatore elettrico	Emrax 208	9.00	
CaricaBatteria AC/DC	custom	4.00	
User interface control unit & display	custom	1.00	
TOTALE	kg.	136.63	

ost= ∆ +20%

Trasmissione tramite riduttore

COMPONENTI	Nome	Peso	
Propulsore	EMRAX 228	12.00	
Driver	Emsiso 500	5.00	
Battery pack	Samsung, Panasonic, LG	167.50	Cost = Λ +12
BMS + accessory	Vari	9.70	00000 11 111
Riduttore 1:2	Rotax	4.50	
Accessori battery pack enclosure	tbd	20.00	
safety systems	tbd	15.00	
User interface control unit & display	custom	1.00	
TOTALE	kg.	234.70	

Hybrid 35% Electric - Trasmissione con riduttore

COMPONENTI	Nome	Peso
Propulsore	EMRAX 228	12.00
Driver	Emsiso 500	5.00
Battery pack	Samsung, Panasonic, LG	58.63
BMS + accessory	Vari	5.70
Riduttore 1:2	Rotax	4.50
Accessori battery pack enclosure	tbd	8.00
safety systems	tbd	8.00
Motore Endotermico carica	HE	15.00
Generatore elettrico	Emrax 208	9.00
CaricaBatteria AC/DC	custom	4.00
User interface control unit & display	custom	1.00
TOTALE	kg.	130.83

Cost=∆

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Operative Cost Analyses for the FE and HE versions

Fuel = 1.55€/lt Electric energy = 0.28€/KWh

Phase	lt/h.	Time (s)	lt.
Take off	27.00	10	0.08
Climb 2500	27.00	180	1.35
Cruise 2500	25.00	1800	12.50
Climb 6000	27.00	180	1.35
Cruise 6000	25.00	1800	12.50
Descent	7.50	600	1.25
		TOTAL	29.03

Stima massima del consumo Rotax 912

Rotax 29lt./per mission 17% e	efficiency			
Soluzione	Full electric	Hybrid 35%	Rotax 912S	
Costo operativo per volo	€ 13.20	€ 18.90	€45.00	
Costo totale 100 voli	€1,320.00	€1,890.00	€4,500.00	
Costo totale 250 voli	€ 2,640.00	€ 3,780.00	€9,000.00	
Costo totale 500 voli	€ 6,600.00	€ 9,450.00	€ 22,500.00	
Risparmio per volo	€ 31.80	€ 26.10	€0.00	
Risparmio per 100 voli	€ 3,180.00	€ 2,610.00	€0.00	
Risparmio per 250 voli	€ 6,360.00	€ 5,220.00	€0.00	
Risparmio per 500 voli	€ 15,900.00	€ 13,050.00	€0.00	
	45kWhr, η = 0.95.	14kWhr, 9.5l η = 0.95.	t 29lt	

Phase	lt/h.	Time (s)	lt.
Take off	27.00	10	0.08
Climb 2500	27.00	180	1.35
Cruise 2500	21.00	1800	10.50
Climb 6000	27.00	180	1.35
Cruise 6000	21.00	1800	10.50
Descent	7.50	600	1.25
		TOTAL	25.03

Stima media del consumo Rotax 912

otax 25lt./per mission 20% o	efficiency		
Soluzione	Full electric	Hybrid 35%	Rotax 912S
Costo operativo per volo	€13.20	€ 18.90	€ 38.75
Costo totale 100 voli	€1,320.00	€ 1,890.00	€ 3,875.00
Costo totale 250 voli	€ 2,640.00	€ 3,780.00	€ 7,750.00
Costo totale 500 voli	€ 6,600.00	€ 9,450.00	€ 19,375.00
Risparmio per volo	€ 25.55	€ 19.85	€0.00
Risparmio per 100 voli	€ 2,555.00	€ 1,985.00	€ 0.00
Risparmio per 250 voli	€ 5,110.00	€ 3,970.00	€ 0.00
Risparmio per 500 voli	€ 12,775.00	€9,925.00	€ 0.00

Hybrid-Electric or Full Electric feasibility study for SEAGULL A/C

• Engineering Evaluation (preliminary)

Results show that the **hybrid version** (35% of electric autonomy) with a small 10lt tank and with a weight slightly higher than the current one is **feasible and convenient** after a certain number of fights.

The **full electric** version **not ready yet**, because it implies an additional weight that is higher than 100 kg if compared to the current version. At the same time it gives a higher takeoff thrust from 1.3 times up to 2 times the one obtainable with a Rotax engine.

The **cost of the full electric** propulsion system is up to the 33% **higher** with respect to the hybrid electric version.

This **preliminary study** doesn't take into account consumptions (even if not significant) of electrical actuators for the movement of the control surfaces, potential optimisation that can be done in terms of performance of the propeller, weight of cooling systems, etc.

Thank you for your attention

If You Want To Go Fast, Go Alone. If You Want To Go Far, Go Together.

